

Screw-in probe with M8x1 connector

Article no.: 803214 1011

Screw-in probes with M8x1 connector are used in process measurement technology and measure the temperature in cables or vessels in the range from -50 °C to +400 °C in gaseous or liquid media. The protection sleeve is made of stainless steel and can be inserted into the process permanently, pressure proof and vibration resistant with the M8x1 thread. A suitable connection cable can be found in the accessories. To order your probe, select the required configuration and send us the order code.

General Information				
Measuring range	-50 °C to +400 °C depending on the sensor Type			
Accuracy	depending on sensor Type			
Response time	t63 / t99: information is available on request			
Supply and output				
Max. meas. current	max. 1 mA			
Supply voltage	approx. 5 V depending on measurement current			
Measurement signal	passive (resistance value)			
Ambient conditions				
Protection class	IP65 according DIN 60529			
Humidity and moisture condensation resistance	according to application-specific qualification			
Certificates and Standards				
Standards	DIN EN 61326-1:2013 DIN EN IEC 63000:2019-05			
Directive	RoHS 2011/65/EU 2014/30/EU			
Certificates	Certificate of suitability (on request)			

Customizable optio
A-Measuring element
B-Connection Type
C-Mounting length

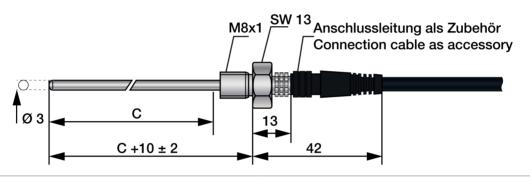
B - Connection Type

A - Measuring element					
Code	Sensor	Accuracy / Tolerance resistance	From (°C) ¹	To (°C)1}	
A011	Pt100	CI. A dT = $\pm (0.15 ^{\circ}\text{C} + 0.002 t)^{1}$	-50 °C	+300 °C	
A012	Pt100	CI. B dT = $\pm (0.30 \text{ °C} + 0.005 t)^{1}$	-50 °C	+400 °C	
A013	Pt100	1/3 Cl. B dT = $\pm (1/3 \cdot (0.30 ^{\circ}\text{C} + 0.005 t))^{1}$	-50 °C	+200 °C	
A014	Pt100	1/10 Cl. B dT = $\pm (1/10 \cdot (0.30 ^{\circ}\text{C} + 0.005 t))^{1}$	±0 °C	+100 °C	
A022	Pt500	CI. B dT = $\pm (0.30 ^{\circ}\text{C} + 0.005 t)^{1}$	-70 °C	+500 °C	
A031	Pt1000	CI. A dT = $\pm (0.15 ^{\circ}\text{C} + 0.002 t)^{1}$	-50 °C	+300 °C	
A032	Pt1000	CI. B dT = $\pm (0.30 \text{ °C} + 0.005 t)^{1}$	-50 °C	+400 °C	
A106	NTC 5 kOhm	R25 = 5 KOhm ±1 %	-40 °C	+150 °C	
A210	Ni1000	-60 °C to 0 °C: dT = \pm (0,4 °C + 0,028 · T) 0 °C to +150 °C: dT = \pm (0,4 °C + 0,007 · T)	-60 °C	+150 °C	

	() , , , , , , , , , , , , , , , , , ,			B4
Pt100	1/3 CI. B dT = $\pm (1/3 \cdot (0.30 ^{\circ}\text{C} + 0.005 t))^{1}$	-50 °C	+200 °C	
Pt100	1/10 CI. B dT = $\pm (1/10 \cdot (0,30 \text{ °C} + 0,005 t))^{1}$	±0 °C	+100 °C	Possible
Pt500	CI. B dT = $\pm (0.30 ^{\circ}\text{C} + 0.005 t)^{1}$	-70 °C	+500 °C	Sensor
Pt1000	CI. A dT = $\pm (0.15 ^{\circ}\text{C} + 0.002 t)^{1}$	-50 °C	+300 °C	Pt
Pt1000	CI. B dT = $\pm (0.30 ^{\circ}\text{C} + 0.005 t)^{1}$	-50 °C	+400 °C	NTC
NTC 5 kOhm	R25 = 5 KOhm ±1 %	-40 °C	+150 °C	Ni
	$-60 ^{\circ}\text{C}$ to $0 ^{\circ}\text{C}$: dT = $\pm (0.4 ^{\circ}\text{C} + 0.028 ^{\circ}\text{T}) \mid 0 ^{\circ}\text{C}$			

Code	Conn. Type
B2	2-Wire (2W)
B3	3-Wire (3W)
B4	4-Wire (4W)

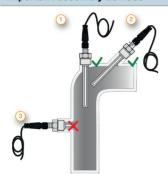
Possible connections					
Sensor 2W 3W 4W					
Pt	V	V	V		
NTC	V				
Ni	V	V	V		


¹¹according to IEC 751 / EN 60751 | ²¹ Perm. range °C | Detailed information and the characteristics can be found in our download area.

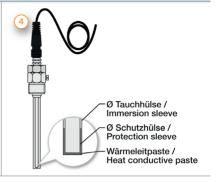
Connector		
Electrical connection	M12 Connector	
Length connector (mm)	13	
Tmax	+80 °C	

Screw-in thread		Protection sleeve		C - Mounting length			
Length (mm)	10	Material	Stainless steel 1.4571	Code	Length (mm)	Code	Length (mm)
Process connection	M8x1	Mounting length (mm)	please choose	C0020	201}	C0100	1001}
Wrench size	13	Ø (mm)	3 ²	C0040	401}	C0200	2001}
Other mounting lengths on request 1)Tolerance ± 1% 2) Tolerance ± 0,1 mm			C0050	50 ¹ }	C0300	3001}	
			C0060	601}			

Technical drawing				
Customizable options A - Measuring element	B - Connection Type	C - Mounting length	All dimensions in mm	



Delivery and Assembly		
Assembly instructions	via process connection	
Delivery and Packaging	Probe, Instruction manual, seperatly packaged in PE bag	


Your order code				
Article no.	Measuring element	Connection Type	Mounting length	
803214 1011	A	B	C	

Important assembly advices

Measurement errors can occur due to heat dissipation to the environment. To keep these as small as possible, we recommend immersing the protection sleeve of your temperature probe as deeply as possible in the medium to be measured during installation. The optimum installation depth should be 10-15 times the \varnothing of the protection sleeve or, when using an immersion sleeve, the $\ensuremath{\mathcal{O}}$ of the immersion sleeve. When installing in pipelines whose \emptyset does not have a sufficiently deep installation depth, you should install the probe either at an angle or in a pipe elbow. Make sure that you have sufficient space so that the probe can be removed again. 1) Installation with sufficient installation depth 2) Installation at an angle with small pipe Ø 3) Not like this: Minimum installation depth not reached

Installation by using an immersion sleeve (4): Please ensure that the Ø and length of the immersion sleeve are selected to suit the installation situation so that the minimum immersion depth can be achieved. Please also pay attention to the correct process connection. Since the probe is not inserted directly into the medium, but via the immersion sleeve, the response times are somewhat slower. The probe should be selected in such a way that the protection sleeve touches the bottom of the immersion sleeve and that the air cushion around the protection sleeve is as small as possible. The use of thermal conduction paste can improve the response times.