

Universal Hutschienen-Transmitter RTD/TE IPAQ-R330

Artikelnummer: 809700 2901

Der IPAQ R330 für Widerstandssensoren und Thermoelemente ist ein Kopftransmitter für den Einbau in Widerstandsthermometer mit Anschlussköpfen in DIN B oder größer. Das durchdachte Produktdesign lässt ausreichend Platz für eine Montage. Er ist optimal für de Einsatz im Anlagen- und Maschinenbau konstruiert und zeichnet sich durch hohe Genauig keit, Zuverlässigkeit, Langzeitstabilität und sein robustes Produktdesign aus. Der Messumformer ist äußerst unempfindlich gegenüber äußeren Einflüssen wie z.B. Vibration und EMV-Störungen. Die Montage und Inbetriebnahme ist besonders benutzerfreundlich. So kann bspw. die Parametrierung kabellos bequem und einfach über die Handy-App via NFC Technologie vorgenommen werden. Darüber lassen sich auch die Überwachungsfunktione... wie Fühlerbruchüberwachung, Fühlerkurzschluss und Messbereichsüberwachung aktivieren.

Besondere Merkmale		
Ein- und Ausgänge	Parametrierung	
Eingang: diverse Widerstandssensoren und Thermoelemente Ausgang: 4 bis 20mA, temperaturlineares Ausgangssignal	Konfiguration – kabellos via NFC Technologie Kostenlose App für Iphone, Android & Huawei Parametrierungs-Templates für schnelle Massenkonfiguration	
Genauigkeit und Langzeitstabilität		
Genauigkeit: abhängig vom Temperatursensor / Thermoelement Langzeitstabilität Maximal ±0,02 °C oder ±0,02 % der Spanne pro Jahr		
Design	Alarmfunktion	
Robust - vibrations- und stoßfeste Bauart Passend für Hutschienen nach DIN EN50022 Kompaktes Gehäusedesign Erleichterte Montage	via App konfigurerbar Fühlerbruchüberwachung Fühlerkurzschluss Messbereichsüberwachung	

Widerstandser	nsoren (RTD)				
Messelement	Norm	Max. konfig. Messbereich	Min. Spanne	Genauigkeit	
Pt100	IEC 60751 a=0,00385 JIS C 1604 a=0,003916	-200 °C bis +850 °C -328 °F bis +1562 °F	10 °C 50 °F	±0,08 °C ±0,08 % ^{2]}	
Pt X (10 <x<1000)< td=""><td>IEC 60751 a=0,00385</td><td>Korresp. zu max. 4000 Ω</td><td>10 °C 50 °F</td><td>±0,1 °C ±0,1 % ²⁾</td></x<1000)<>	IEC 60751 a=0,00385	Korresp. zu max. 4000 Ω	10 °C 50 °F	±0,1 °C ±0,1 % ²⁾	
NI100	DIN 43760	-60 °C bis +250 °C -76 °F bis +482 °F	10 °C 50 °F	±0,1 °C ±0,1 % ²	
NI120	Edison Curve No. 7	-60 °C bis +250 °C -76 °F bis +482 °F	10 °C 50 °F	±0,1 °C ±0,1 % ^{2}}	
Ni1000 1}	DIN 43760	-50 °C bis +180 °C -58 °F bis +356 °F	10 °C 50 °F	±0,1 °C ±0,1 % ^{2}}	
Cu10	Edison Copper Windings No.15	-50 °C bis +200 °C -58 °F bis +392 °F	83 °C 181,4 °F	±1,5 °C ±0,2 % ^{2}}	
Temperatureinflo	pperatureinfluss ±0.01 % der Spanne pro °C 1) Ni1000 ±0.02 % bei 2-Leiter > 2000 Ω der Spanne pro °C 2) der Spanne				
Anschlussart		2-, 3- und 4-Leiter			
Sensormessstrom		≤ 300 µA			
Max. Schleifenwiderstand Leitungswiderstand		2-Leiter: Kompensation für 0 bis 40 Ω Schleifenwiderstand 3-, 4-Leiter: 50 Ω Draht In der APP einstellbar			

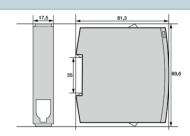
Eingang Thermoelemente					
Messelement	Werkstoff	Norm	Max. konfig. Messbereich	Min. Spanne	Genauigkeit
Тур В	Pt30Rh-Pt6Rh	IEC 60584	-400 °C bis +1800 °C -688 °F bis +3272 °F	+700 °C +1292 °F	±1 °C ±0,1 % 1}
Тур С	W5-Re	ASTM E 988	0 °C bis +2315 °C +32 °F bis +4199 °F	+200 °C +392 °F	±1 °C ±0,1 % 1}
Typ D	W3-Re	ASTM E 988	0 °C bis +2315 °C +32 °F bis +4199 °F	+200 °C +392 °F	±1 °C ±0,1 % 1}
Тур Е	NiCr-CuNi	IEC 60584	-200 °C bis +1000 °C -328 °F bis +1832 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур J	Fe-CuNi	IEC 60584	-200 °C bis +1000 °C -328 °F bis +1832 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур К	NiCr-Ni	IEC 60584	-200 °C bis +1350 °C -328 °F bis +2462 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур N	NiCrSi-NiSi	IEC 60584	-100 °C bis +1300 °C -148 °F bis +2372 °F	+100 °C +212 °F	±0,5 °C ±0,1 % 1}
Тур N	NiCrSi-NiSi	IEC 60584	-250 °C bis -100 °C -418 °F bis +148 °F	±1 °C ±1 °F	±0,5 °C ±0,1 % 1}
Typ R	Pt13Rh-Pt	IEC 60584	-50 °C bis +1750 °C -58 °F bis +3182 °F	+100 °C +212 °F	±1 °C ±0,1 % 1}
Typ S	Pt10Rh-Pt	IEC 60584	-50 °C bis +1750 °C -58 °F bis +3182 °F	+300 °C +572 °F	±1 °C ±0,1 % 1}
Тур Т	Cu-CuNi	IEC 60584	-200 °C bis +400 °C -328 °F bis +752 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Temperatureinfluss ±0.01 % der Spanne pro °C 1) der Spanne (Kaltstellenkompensationsfehler nicht enthalten)					
Eingangsimpedanz >10 MΩ					
Max. Schleifenwiderstand (Ω) 500 (inkl. Thermoelement)					
Kaltstellenkompensation Intern oder external		ern			

Weitere Eingänge			
Widerstand Potentiometer		Spannungseingang	
Widerstandsbereich (Ω)	0 bis 10000		
Widerstandsbereich Potentiometer (Ω)	100 bis 10000	Spannungsbereich (mV) -10 bis +1000	-10 bis +1000
Mindestspanne (Ω)	10	Mindestspanne (mV)	2
Kundenspezifische Linearisierung	bis zu 50 Punkten	Kundenspezifische Linearisierung	bis zu 50 Punkten
Sensormessstrom (µA)	<300	Eingangsimpedanz (MΩ)	> 10
Max. Widerstand der Leitung (Ω)	20 Draht	Schleifenwiderstand (Ω)	500

Generelle Informationen zum Eingang	
Nullpunkteinstellung	Innerhalb des ganzen Messbereiches
Max. Offseteinstellung	50% des gewählten Maximalwertes

Ausgang		
Ausgangsart	analog, temperaturlinear für RTD & TE	
Ausgangssignal (mA)	4 bis 20; 20 bis 4	Output load diagram Standard version
Parametrierung	Konfigurierbar via NFC	R _{LOAD} (Ω)=(U-8)/0.022
Auflösung (μA)	0,4	1800
Messgenauigkeit (μA)	1	800
Bürde	750 Ω bei 24 VDC	400 0 4 8 12 16 20 24 28 32 36 Supply voltage U (V DC)
Anschlussart	2-Draht	

	Zeitverhalten	
022	Einschaltzeit (ms)	~150 - 300
\sim	Aufwärmzeit	Nach max. 4 Minuten wird die angegebene Genauigkeit erreicht
	Signaldämpfung (s)	0,15 bis 75 s per APP einstellbar
KS/	Messtakt (s)	<1
¥	Sensorüberwachung & Sensorfehler Sensorbruch/Kurzschluss Upscale (≥21.0 mA) oder Downscale (≤3.6 mA)	
Σ	Sensorbruch/Kurzschluss	Upscale (≥21.0 mA) oder Downscale (≤3.6 mA)
	Sensorfehler	gemäß NAMUR NE43


Genauigkeit und Stabilität	
Typische Genauigkeit	
RTD und Thermoelement	Siehe untenstehende Tabelle
Genauigkeit Widerstand (digital) 13	0-1000 Ω: Max. ±40 mΩ oder ±0,040 % der Spanne 1000-10000 Ω: ±0,05 % oder max. 1 Ω der Spanne
Genauigkeit Widerstand (analog) 13	±0.06 % der Spanne
Genauigkeit Spannung (digital) 13	±5 μV or ±0.02 % der Spanne
Genauigkeit Spannung (analog) 13	±0.06 % der Spanne
Temperatureinfluss ±0.01 % der Spanne pro °C ¹¹ Gesamtgenauigkeit = Summe der digitalen und analogen Genauigkeit, berechnet als RMS-Wert (Root Mean Square)	
(Root Mean Square)	

Temperatureinfluss	
RTD und Thermoelement	Siehe untenstehende Tabelle
Widerstand	$\pm 0.01~\% < 4000~\Omega^{~2}$ < $\pm 0.02~\%$ der Spanne pro °C
Spannung	±0,01 % der Spanne pro °C

1 0		
Temperatureinfluss ±0.01 % der Spanne pro °C ² 2000 Ω bei 2-Draht		
Kaltstellenkompensation		
Kaltstellenkompensation (CJC)	±0,5 °C innerhalb der Umgebungstemperatur -40 °C bis +85 °C	
Temperatureinfluss CJC	±0,01 °C pro °C	
Einfluss der Sensorleitung		
RTD und Widerstand (2-Draht)	Einstellbare Drahtwiderstandskompensation	
RTD und Widerstand (3-Draht)	Vernachlässigbar, bei gleichem Leitungswiderstand	
RTD und Widerstand (4-Draht)	Vernachlässigbar	
Thermoelement und Spannung	Vernachlässigbar	
Weitere Angaben		
Einfluss Versorgungsspannung	Innerhalb der spezifizierten Grenzen <±0,005 % der Spanne pro V	

Weitere Angaben	
Einfluss Versorgungsspannung	Innerhalb der spezifizierten Grenzen <±0,005 % der Spanne pro V
Langzeitstabilität	Maximal ±0,02 °C oder ±0,02 % der Spanne pro Jahr
D	

Bautorm	
Маßе	Siehe Zeichnung
Material Entzündlichkeit	PC/ABS + PA, V0/HB, RoHS compliant
Montage	DIN B-Kopf oder größer, DIN-Schiene (mit Montagesatz)
Anschluss	Einzelne Litzen, Max. 1,5 mm², AWG 16
Gewicht (g)	35
Allgemeine Daten	
Galvanische Trennung	1500 VAC, 1 min

Galvanische Trennung	1500 VAC, 1 min	
Versorgungsspannung (VDC)	8 bis 36, verpolungssicher	Alle Angaben in mm

Umgebungsbedingungen					
Umgebungstemperatur	Lagerung	-40 °C bis +85 °C -40 °F bis +185 °F	Betrieb	-40 °C bis +85 °C -40 °F bis +185 °F	
Feuchtigkeit (%rF)	0 bis 98 (nicht	0 bis 98 (nicht kondensierend)			
Schutzart	Gehäuse IP65	Gehäuse IP65		Anschlussklemmen IP00	
Schwingungsfestigkeit	gemäß IEC 600	gemäß IEC 60068-2-6, Test Fc, 10bis2000 Hz, 10 g			
Schock	gemäß IEC-600	gemäß IEC-60068-2-27, test Ea			
Umgebungseinflüsse	gemäß IEC 600	gemäß IEC 60068-2-31:2008, Test Ec			
EMC	MC				
Standard	Richtlinie: 2014	Richtlinie: 2014/30/EU Harmonisierte Normen: EN 61326-1, EN 61326-2-3 NAMUR NE 21			
Störfestigkeit	EN61326-1 und	EN61326-1 und -2-3: Kriterium A NE 21: <0,5% der Spannweite			

3				
Werkskonfiguration (falls nicht anders bestellt)				
≥	Eingang	Pt100, 3-Leiter, 0 °C bis 100 °C	Ausgang (mA)	4 bis 20
	Sensorüberwachung	Upscale (≥21.0 mA)		

Lieferung

Transmitter, Bedienungsanleitung, einzeln verpackt in PE Beutel

Passendes Zubehör		
Bild	Bezeichnung	Bestell-Nr.
	Hutschienennetzteil	auf Anfrage
	Tischnetzteil	auf Anfrage
	Anschlusskopfmontage-Set	auf Anfrage
	DIN-Schienenadapter und Schrauben (10 Stk.)	auf Anfrage

		Ausgang
1 2 3 4	1 2 3 4	Output load diagram Standard version $R_{LOAD}(\Omega)=(U-8)/0.022$
1 2 3 4 100%	Potentiometer - 3-Leiter 1 2 3 4 -mV+	1200 800 400 0 4 8 12 16 20 24 28 32 36 Supply voltage U (V DC)
Widerstand - 3-Leiter	Spannung - mV	Versorgungsspannung V DC
1 2 3 4	1 2 3 4 T/C	IOUT RLOAD
Widerstand - 3-Leiter	Thermoelement	
	1 2 3 4 RTD T/C RTD & Thermoelement (RTD	
	0% 100% Widerstand - 2-Leiter 1 2 3 4 0% 100% Widerstand - 3-Leiter	100% 100% 0% 100% 100%

Montage

Sie können den APAQ R330 Hutschienen-Transmitter einfach auf 35mm Hutschienen nach DIN EN50022 montieren. Die Montage ist einfach, weil Sie den Transmitter ohne Werkzeug auf der Schiene befestigen können

Montagematerial für den Einbau des Messumformers bieten wir als Zubehör an.

Wichtig: Um Messfehler vorzubeugen, müssen die

Verbindungsschrauben für die Befestigung der Anschlussleitung fest angezogen sein.

Montage und Demontage des Transmitter

- (1) Den oberen Teil des Transmitters auf der Schiene befestigen
 (2) Drücken Sie anschließend den unteren Teil des Transmitters auf die Schiene. Der elektrische Anschluss erfolgt gemäß des Schaltbildes
 (4) Um den Transmitter zu entfernen, verwenden Sie einen
- Schraubenzieher und biegen Sie die Verriegelung nach unten

Konfiguration | Parametrierung

Massenparametrierung & Einstellungs-Templates

Vor der Konfiguration beachten Sie bitte folgendes:

Stellen Sie sicher, dass Sie ein Smartphone mit aktivierter NFC-Funktion zu Verfügung haben.

Laden Sie die App "INOR Connect" auf Ihr Mobilgerät herunter.

Erforderliche Versionen:

iOS: ab iOS 13 ab Iphone 7 Android: ab Android 4.4

Konfigurationsverfahren

Starten Sie die App INOR Connect und halten Sie das Smartphone an der Stelle, wo sich das NFC befindet, flach auf den Transmitter. Klicken Sie auf "Read Configuration" und halten Sie Ihr Smartphone wie unter Punkt 1 beschrieben gegen den Transmitter.

In der App können Sie nun folgendes bearbeiten:

Sensortyp und Anzahl der Leiterschaltungen

Messbereichseinstellung

Upscale oder Downscale

Sensorüberwachung

TAG- Nummer

Passworteinstellung

Im Konfigurationsfenster können Sie die Parameter eingeben und ändern. Die gewählte Konfiguration wird durch Klicken auf den Button "Senden zum Transmitter" auf den Transmitter übertragen. Nach abgeschlossener Übertragung verwendet der Transmitter die neuen Parameter.