

Universal Kopf-Transmitter RTD/TE IPAQ-C330

Artikelnummer: 809700 1901

Der IPAQ C330 für Widerstandssensoren und Thermoelemente für den Einbau in Temperaturfühler mit Anschlussköpfen in DIN B oder größer. Das durchdachte Produktdesign lässt ausreichend Platz für eine Montage. Er ist optimal für den Einsatz im Anlagen und Maschinenbau konstruiert und zeichnet sich durch hohe Genauigkeit, Zuverlässigkeit, Langzeitstabilität und sein robustes Produktdesign aus. Der Messumformer ist äußerst unempfindlich gegenüber äußeren Einflüssen wie z.B. Vibration und EMV-Störungen. Die Montage und Inbetriebnahme ist besonders benutzerfreundlich. So kann bspw. die Parametrierung kabellos bequem und einfach über die Handy-App via NFC-Technologie vorgenommen werden. Darüber lassen sich auch die Überwachungsfunktionen wie Fühlerbruchüberwachung, Fühlerkurzschluss und Messbereichsüberwachung aktivieren.

Besondere Merkmale		
Ein- und Ausgänge	Parametrierung	
Eingang: diverse Widerstandssensoren und Thermoelemente Ausgang: 4 bis 20mA, temperaturlineares Ausgangssignal	Konfiguration – kabellos via NFC Technologie Kostenlose App für Iphone, Android & Huawei Parametrierungs-Templates für schnelle Massenkonfiguration	
Genauigkeit und Langzeitstabilität		
Genauigkeit: abhängig vom Temperatursensor / Thermoelement Langzeitstabilität Maximal ±0,02 °C oder ±0,02 % der Spanne pro Jahr		
Design	Alarmfunktion	
Robust - vibrations- und stoßfeste Bauart Kompakt - Gehäuse nur 10,5 mm hoch Passend für Anschlussköpfe in DIN B oder größer Großes Zentrumsloch für erleichterte Montage	via App konfigurerbar Fühlerbruchüberwachung Fühlerkurzschluss Messbereichsüberwachung	

Input Universal Kopf-Transmitter RTD/TE IPAQ-C330				
Widerstandser	Widerstandsensoren (RTD)			
Messelement	Norm	Max. konfig. Messbereich	Min. Spanne	Genauigkeit
Pt100	IEC 60751 a=0,00385 JIS C 1604 a=0,003916	-200 °C bis +850 °C -328 °F bis +1562 °F	10 °C 50 °F	±0,08 °C ±0,08 % ^{2}}
Pt X (10 <x<1000) 60751="" a="0,00385</td" iec="" =""><td>Korresp. zu max. 4000 Ω</td><td>10 °C 50 °F</td><td>±0,1 °C ±0,1 % ²</td></x<1000)>		Korresp. zu max. 4000 Ω	10 °C 50 °F	±0,1 °C ±0,1 % ²
NI100	DIN 43760	-60 °C bis +250 °C -76 °F bis +482 °F	10 °C 50 °F	±0,1 °C ±0,1 % ²
NI120	Edison Curve No. 7	-60 °C bis +250 °C -76 °F bis +482 °F	10 °C 50 °F	±0,1 °C ±0,1 % ²
Ni1000 1}	DIN 43760	-50 °C bis +180 °C -58 °F bis +356 °F	10 °C 50 °F	±0,1 °C ±0,1 % ²
Cu10	Edison Copper Windings No.15	-50 °C bis +200 °C -58 °F bis +392 °F	83 °C 181,4 °F	±1,5 °C ±0,2 % ²
Temperatureinfluss ±0.01 % der Spanne pro °C ¹¹ Ni1 Anschlussart Sensormessstrom Max. Schleifenwiderstand		1000 ±0.02 % bei 2-Leiter > 2000 Ω der Spanne pro °C \mid ² der Spanne		
		2-, 3- und 4-Leiter		
		≤ 300 µA		
		2-Leiter: Kompensation für 0 bis 40 Ω Schleifenwiderstand 3-, 4-Leiter: 50 Ω Draht		
Leitungswiderstand		In der APP einstellbar		

Eingang Thermoelemente					
Messelement	Werkstoff	Norm	Max. konfig. Messbereich	Min. Spanne	Genauigkeit
Тур В	Pt30Rh-Pt6Rh	IEC 60584	-400 °C bis +1800 °C -688 °F bis +3272 °F	+700 °C +1292 °F	±1 °C ±0,1 % 1}
Тур С	W5-Re	ASTM E 988	0 °C bis +2315 °C +32 °F bis +4199 °F	+200 °C +392 °F	±1 °C ±0,1 % 1}
Тур D	W3-Re	ASTM E 988	0 °C bis +2315 °C +32 °F bis +4199 °F	+200 °C +392 °F	±1 °C ±0,1 % 1}
Тур Е	NiCr-CuNi	IEC 60584	-200 °C bis +1000 °C -328 °F bis +1832 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур J	Fe-CuNi	IEC 60584	-200 °C bis +1000 °C -328 °F bis +1832 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур К	NiCr-Ni	IEC 60584	-200 °C bis +1350 °C -328 °F bis +2462 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Тур N	NiCrSi-NiSi	IEC 60584	-100 °C bis +1300 °C -148 °F bis +2372 °F	+100 °C +212 °F	±0,5 °C ±0,1 % 1}
Тур N	NiCrSi-NiSi	IEC 60584	-250 °C bis -100 °C -418 °F bis +148 °F	±1 °C ±1 °F	±0,5 °C ±0,1 % 1}
Typ R	Pt13Rh-Pt	IEC 60584	-50 °C bis +1750 °C -58 °F bis +3182 °F	+100 °C +212 °F	±1 °C ±0,1 % 1}
Typ S	Pt10Rh-Pt	IEC 60584	-50 °C bis +1750 °C -58 °F bis +3182 °F	+300 °C +572 °F	±1 °C ±0,1 % 1}
Тур Т	Cu-CuNi	IEC 60584	-200 °C bis +400 °C -328 °F bis +752 °F	+50 °C +122 °F	±0,5 °C ±0,1 % 1}
Temperatureinfluss ±0.01 % der Spanne pro °C 1) der Spanne (Kaltstellenkompensationsfehler nicht enthalten)					
Eingangsimpedanz >10 MΩ		>10 MΩ			
Max. Schleifenwiderstand (Ω) 500 (inkl. There		500 (inkl. Thern	noelement)		
Kaltstellenkompensation Intern		Intern oder exte	Intern oder extern		

Weitere Eingänge			
Widerstand Potentiometer		Spannungseingang	
Widerstandsbereich (Ω)	0 bis 10000		
Widerstandsbereich Potentiometer (Ω)	100 bis 10000	Spannungsbereich (mV) -10 bis +1000	-10 bis +1000
Mindestspanne (Ω)	10	Mindestspanne (mV)	2
Kundenspezifische Linearisierung	bis zu 50 Punkten	Kundenspezifische Linearisierung	bis zu 50 Punkten
Sensormessstrom (µA)	<300	Eingangsimpedanz (MΩ)	> 10
Max. Widerstand der Leitung (Ω)	20 Draht	Schleifenwiderstand (Ω)	500

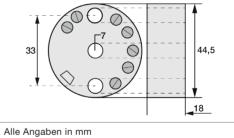
Generelle Informationen zum Eingang	
Nullpunkteinstellung Innerhalb des ganzen Messbereiches	
Max. Offseteinstellung	50% des gewählten Maximalwertes

Ausgang		
Ausgangsart	analog, temperaturlinear für RTD & TE	
Ausgangssignal (mA)	4 bis 20; 20 bis 4	Output load diagram Standard version
Parametrierung	Konfigurierbar via NFC	R _{LOAD} (Ω)=(U-8)/0.022
Auflösung (μA)	0,4	1600
Messgenauigkeit (μA)	1	800
Bürde	750 Ω bei 24 VDC	4 8 12 16 20 24 28 32 36 Supply voltage U (V DC)
Anschlussart	2-Draht	4 0 12 10 20 24 20 32 30 Supply Voltage 0 (V DO)

	Zeitverhalten	
022	Einschaltzeit (ms)	~150 - 300
05.2	Aufwärmzeit	Nach max. 4 Minuten wird die angegebene Genauigkeit erreicht
/ 02.	Signaldämpfung (s)	0,15 bis 75 s per APP einstellbar
	Messtakt (s)	<1
Sensorüberwachung & Sensorfehler		nler
Σ	Sensorbruch/Kurzschluss	Upscale (≥21.0 mA) oder Downscale (≤3.6 mA)
	Sensorfehler	gemäß NAMUR NE43

Genauigkeit und Stabilität		
Typische Genauigkeit		
RTD und Thermoelement	Siehe untenstehende Tabelle	
Genauigkeit Widerstand (digital) 1) 0-1000 Ω: Max. ±40 mΩ oder ±0,040 % der Spanne 1000-10000 Ω: ±0,05 % oder max. 1 Ω der Spanne		
Genauigkeit Widerstand (analog) 13	±0.06 % der Spanne	
Genauigkeit Spannung (digital) 13	±5 μV or ±0.02 % der Spanne	
Genauigkeit Spannung (analog) 13	±0.06 % der Spanne	

Temperatureinfluss ±0.01 % der Spanne pro °C | 1) Gesamtgenauigkeit = Summe der digitalen und analogen Genauigkeit, berechnet als RMS-Wert (Root Mean Square)


Temperatureinfluss	
RTD und Thermoelement	Siehe untenstehende Tabelle
Widerstand $\pm 0.01~\% < 4000~\Omega^{(2)} < \pm 0.02~\%$ der Spanne pro °C	
Spannung	±0,01 % der Spanne pro °C

-		
Temperatureinfluss ±0.01 % der Spanne pro °C ²⁾ 2000 Ω bei 2-Draht		
Kaltstellenkompensation		
Kaltstellenkompensation (CJC)	±0,5 °C innerhalb der Umgebungstemperatur -40 °C bis +85 °C	
Temperatureinfluss CJC	±0,01 °C pro °C	
Einfluss der Sensorleitung		
RTD und Widerstand (2-Draht)	Einstellbare Drahtwiderstandskompensation	
RTD und Widerstand (3-Draht)	Vernachlässigbar, bei gleichem Leitungswiderstand	
RTD und Widerstand (4-Draht)	Vernachlässigbar	
Thermoelement und Spannung Vernachlässigbar		
Weitere Angaben		
Einfluss Versorgungsspannung	Innerhalb der spezifizierten Grenzen <±0,005 % der Spanne pro V	

Маве	Siehe Zeichnung	
Bauform		
Langzeitstabilität	Maximal ±0,02 °C oder ±0,02 % der Spanne pro Jahr	
Einfluss Versorgungsspannung	Innerhalb der spezifizierten Grenzen <±0,005 % der Spanne pro V	

	9
Material Entzündlichkeit PC/ABS + PA, V0/HB, RoHS compliant	
Montage	Hutschiene nach DIN 50022 / EN 60715, 35mm / 1,38"
Anschluss	Einzelne Litzen, Max. 1,5 mm², AWG 16
Gewicht (g)	55
Allgemeine Daten	

Umgebungsbedingungen								
Umgebungstemperatur	Lagerung	-40 °C bis +85 °C -40 °F bis +185 °F	Betrieb	-40 °C bis +85 °C -40 °F bis +185 °F				
Feuchtigkeit (%rF)	0 bis 98 (nicht	0 bis 98 (nicht kondensierend)						
Schutzart	Gehäuse IP20	Gehäuse IP20		Anschlussklemmen IP20				
Schwingungsfestigkeit	gemäß IEC 600	gemäß IEC 60068-2-6, Test Fc, 10bis2000 Hz, 10 g						
Schock	gemäß IEC-600	gemäß IEC-60068-2-27, test Ea						
Umgebungseinflüsse	gemäß IEC 600	gemäß IEC 60068-2-31:2008, Test Ec						
EMC								
Standard	Richtlinie: 2014	Richtlinie: 2014/30/EU Harmonisierte Normen: EN 61326-1, EN 61326-2-3 NAMUR NE 21						
Störfestigkeit	FN61326-1 und	FN61326-1 und -2-3: Kriterium A NF 21: <0.5% der Spannweite						

A/K	Werkskonfiguration (falls nicht a	erkskonfiguration (falls nicht anders bestellt)				
⋛	Eingang	Pt100, 3-Leiter, 0 °C bis 100 °C	Ausgang (mA)	4 bis 20		
	Sensorüberwachung	Upscale (≥21.0 mA)				

Lieferung

Transmitter, Bedienungsanleitung, einzeln verpackt in PE Beutel

Passendes Zubehö		
Bild	Bezeichnung	Bestell-Nr.
	Hutschienennetzteil	auf Anfrage
	Tischnetzteil	auf Anfrage
	Anschlusskopfmontage-Set	auf Anfrage
	DIN-Schienenadapter und Schrauben (10 Stk.)	auf Anfrage

Inbetriebnahme				
Eingang			Ausgang	
1 2 3 4 5 1 2 3 4 5 RTD 0% 100%		1 2 3 4 5	Output load diagram Standard version $R_{LOAD}(\Omega)=(U-8)/0.022$	
RTD - 2-Leiter	Widerstand - 2-Leiter	Potentiometer - 3-Leiter	1200	
1 2 3 4 5 RTD	1 2 3 4 5	1 2 3 4 5 -mV+	400 4 8 12 16 20 24 28 32 36 Supply voltage U (V DC)	
RTD - 3-Leiter	Widerstand - 3-Leiter	Spannung - mV	Versorgungsspannung V DC	
1 2 3 4 5 RTD	1 2 3 4 5	1 2 3 4 5 T/C	louta RLOAD	
RTD - 4-Leiter	Widerstand - 3-Leiter	Thermoelement		
		1 2 3 4 5 RTD RTD & Thermoelement (RTD also forremote CJC)		

Montage

Sie können den APAQ C130 Kopftransmitter in Anschlussköpfe DIN B (oder größer) oder an der Schiene einbauen. Die Montage ist einfach, weil Sie durch das große Zentrumsloch Ø 7 mm die Sensorleitung oder das Einsatzrohr leicht herausziehen können. Der elektrische Anschluss erfolgt gemäß des Schaltbildes

Montagematerial für den Einbau des Messumformers bieten wir als Zubehör an. Je nach ihrem Bedarf finden Sie Kits für Kopf- und Hutschienenmontage.

Wichtig: Um Messfehler vorzubeugen, müssen die Verbindungsschrauben für die Befestigung der Anschlussleitung fest angezogen sein.

Montage an einen Anschlusskopf

- (1) M4 Schraube
- (2) Feder
- (3) Sicherungsscheibe
- (4) Drähte vom Messeinsatz
- (5) MI-Kabel

Montage an der Schiene

- (1) Setzen Sie den Transmitter auf den Befestigungsclip auf
- (2) Drücken Sie den Transmitter bis er fest auf dem Clip einrastet
- (3) Jetzt können Sie das eine Ende des Befestigungsclips schräg auf der Schiene einklippen
- (4) Klippen Sie dann bitte auch das andere Ende des Clips auf der Schiene ein.
- (5) Sie können den Transmitter von der Schiene lösen, wenn Sie den Haken am Befestigungsclip mit dem Schraubenzieher drücken und gleichzeitig den Clip aus der Schiene heben

Konfiguration | Parametrierung

Massenparametrierung & Einstellungs-Templates

Vor der Konfiguration beachten Sie bitte folgendes:

Stellen Sie sicher, dass Sie ein Smartphone mit aktivierter NFC-Funktion zu Verfügung haben.

Laden Sie die App "INOR Connect" auf Ihr Mobilgerät herunter.

Erforderliche Versionen:

iOS: ab iOS 13 ab Iphone 7 Android: ab Android 4.4

Konfigurationsverfahren

Starten Sie die App INOR Connect und halten Sie das Smartphone an der Stelle, wo sich das NFC befindet, flach auf den Transmitter. Klicken Sie auf "Read Configuration" und halten Sie Ihr Smartphone wie unter Punkt 1 beschrieben gegen den Transmitter.

In der App können Sie nun folgendes bearbeiten:

Sensortyp und Anzahl der Leiterschaltungen

Messbereichseinstellung

Upscale oder Downscale

Sensorüberwachung

TAG- Nummer

Passworteinstellung

Im Konfigurationsfenster können Sie die Parameter eingeben und ändern. Die gewählte Konfiguration wird durch Klicken auf den Button "Senden zum Transmitter" auf den Transmitter übertragen. Nach abgeschlossener Übertragung verwendet der Transmitter die neuen Parameter.